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RESUMO: O objetivo deste trabalho, foi avaliar a importância de variáveis 
agronômicas e de imagens do satélite Sentinel-2 para estimativa da 
produtividade de cana-de-açúcar, utilizando o algoritmo Random Forest. 
Foram obtidos dados agronômicos referentes à variedade, estágio de corte, 
tipo de solo e relevo, além de dados provenientes das imagens de satélite 
referentes ao NDVI médio, máximo e o desvio padrão do NDVI de cada 
talhão. Foram criados dois modelos empíricos considerando: i) Variáveis 
agronômicas, ii) Variáveis agronômicas e imagens Sentinel-2. O modelo 
estimativo de produtividade apresentou R² igual a 0,64 e 0,83, RMSE 
de 10,17 e 7,0 ton/ha, para os modelos i e ii, respectivamente. A avaliação 
da importância das variáveis indicou que a variável estágio de corte foi a 
mais importante, seguida das variáveis variedade e NDVI médio do talhão. 
A combinação de variáveis agronômicas e de imagens de satélite trouxe 
melhorias na estimativa da produtividade de cana-de-açúcar.

PALAVRAS-CHAVE: Índice de vegetação, Modelo empírico, NDVI; 
Aprendizado de máquinas

ABSTRACT: The objective of this project was to evaluate the 
importance of agronomic variables and Sentinel-2 satellite images 
to estimate sugarcane yield using the Random Forest algorithm. We 
used agronomic data referring to the variety, cutting stage, soil type 
and relief, in addition to data from satellite images referring to the 
average, maximum NDVI and the standard deviation of the NDVI 
of each field. Two empirical models were created considering: i) 
Agronomic variables, ii) Agronomic variables and Sentinel-2 images. 
The model to estimate sugarcane yield showed R² equal to 0.64 and 
0.83, RMSE of 10.17 and 7.0 ton/ha for models i and ii, respectively. 
The evaluation of the importance of the variables indicated that 
the variable cutting stage was the most important, followed by the 
variable variety and average NDVI of the field. The combination of 
agronomic variables and satellite images brought improvements to 
estimate sugarcane productivity.
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1. Introduction

Sugar cane, which occupies approxima-
tely 8.7 million hectares in Brazil [1], is 
a global crop with importance not only 

for sugar production but is also considered one of the 
great alternatives for the biofuel sector due to its to the 
great potential in the production of ethanol and its by-
-products [1, 2]. In Brazil, culture has great social and 
economic importance for the country, as it generates 
jobs and exports abroad. In Brazil, culture has great 
social and economic importance for the country, as it 
generates jobs and exports abroad. Despite climate fluc-
tuations, sugar cane production reached around 753 
million tons in 10.1 million hectares in the 2021 harvest 

[3]. The Center-South region represented the largest 
productive axis in the country, accounting for 92% of 
the total sugar cane produced [1]. However, since su-
gar cane is a semi-perennial plant, it suffers from clima-
te influences, which fluctuate during the crop’s growth 
cycle. Such oscillations occur especially in the aspect of 
precipitation and its regularity of distribution, contrary 
to what happens with annual crops that are influenced 
by the climate in limited periods [1]. Therefore, sugar 
cane can suffer from occasional water deficits in some lo-
cations, impacting on the productive potentials that may 
vary depending on the interaction between the time of 
year in which they occur and the phase of the pheno-
logical cycle of the crop [3,4]. In this sense, the climate 
is a fundamental factor for the agricultural planning of 
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sugar cane production. The combined effects of natural 
climate variability, growing population conditions, soil 
loss and climate change require methods that provide 
timely and accurate assessment of crop growth and pro-
duction and contribute to increased production sustai-
nability. of agricultural foods [5, 6]. In this context, the 
need for adequate strategic planning, forecasting har-
vests of a given crop and knowledge of its distribution in 
geographic space is extremely important for the plan-
ning of the Brazilian sugar-energy sector. Furthermo-
re, the monitoring of sugar cane production assists in 
the creation of public policies and food security, which 
directly impacts on improving the accuracy and robust-
ness of crop monitoring systems  [8].

Among the means of agricultural monitoring, there 
is the estimation of area and productivity. The forecast 
of agricultural productivity according to traditional 
methods is conducted through agricultural surveys or 
by specialists, based on assessments of crop conditions, 
historical production in the area and environmental 
conditions [9],[10]. Such methods are subjective, time-
consuming and often unrepresentative, due to the small 
sample sizes, which do not consider all the spatial vari-
ability of the production plots [11]. Another disadvan-
tage of these traditional methods is that they are time-
consuming and costly, given the large number of people 
involved [12].

To combat the subjectivity of traditional methods 
of predicting agricultural productivity, and enable the 
analysis of spatial and temporal variability, estimation 
based on empirical predictive models with satellite im-
ages is a promising alternative, which assists sugar cane 
producers in the assertive decision-making, helping in 
the management of the areas. Satellite images have been 
widely used in the monitoring of agricultural crops for 
the general assessment of the state of the sugar cane crop 
[13], such as, for example, in estimating its productivity 
[14]. The productivity estimate can be made based on 
agronomic and climatic data and the combination with 
satellite images, using conventional statistical techniques 
or machine learning [15-17]. 

Some advantages of using machine learning algo-
rithms, such as Random Forest (RF), are related to the 
ability to use a large amount and variety of information, 

such as numerical and categorical data, arising from the 
combination of remote sensing data and agronomic data 
[18]. The integrated use of satellite images with machine 
learning algorithms, such as Random Forest, has shown 
promising results for predicting the production of crops 
such as wheat [19], soybean [20] and sugarcane [21] 
helping in accurately estimating productivity over the 
years and under different environmental conditions.

Considering the variability of environmental condi-
tions, crop yield prediction is not trivial, so predictive 
models using data mining techniques and satellite im-
ages can accelerate the development and, improve the 
accuracy and robustness of these yield prediction sys-
tems in a way regional and temporal. Also, the use of 
productivity estimation models with satellite images as-
sists sugar cane producers spatially and temporally in 
decision-making, helping in the management of areas, 
reducing costs and improving crop productivity.

The objective of this work is to evaluate the potential 
of agronomic variables and Sentinel-2 satellite images to 
estimate sugar cane productivity in the state of São Paulo, 
using the Random Forest machine learning algorithm.

2. Material And Methods
2.1 Data

The study area is located in the Catanduva region, in 
the center of the state of São Paulo, Brazil figure 1. The 
predominant type of soil is clayey, with the soil classes 
with greater predominance being Red Yellow Latosol 
and Red Latosol. In the study area, production environ-
ments C and D are predominant and the average pro-
ductivity of the last three harvests was 72 ton/ha. In total 
there are 3447 plots with an average area of 9,15 hec-
tares. The climate classification of the region is type AW, 
characterized by being tropical, with much more rainfall 
in summer than in winter. The average temperature is 
23.3 °C and the average annual rainfall is 1444 mm [22].

Agronomic data was obtained from a partner com-
pany for the plots in the study area.  For each plot, data 
regarding the variety of sugar cane, cutting stage, TCH 
(ton of sugarcane per hectare), soil types and relief were 
obtained.  In total there are 53 sugarcane varieties in the 
study area, the on-site cutting stage is between the 1st to 
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the 8th cut.  The relief varies from smooth wavy to wavy.  
Data refer to the 2018-2019 sugar cane harvest, which 
comprises April 1, 2018, to March 31, 2019. 

 All data were organized to remove inconsistencies 
and failures (outliers) and, therefore, a standardization 
of information was performed. This consistency analysis 
was performed using the statistical software R [23]. After 
processing the data, a total of 2691 plots were obtained. 

Satellite images were obtained using the MSI 
(Multispectral Imager) orbital multispectral sensor 
on board the Sentinel-2A satellite. These images 
have a temporal resolution of 5 days and 13 spectral 
bands ranging from 443 to 2190 nm, with a spatial 
resolution of 10 m for the red (B4) and near infra-
red (B8) bands. In addition, the images have atmos-
pheric correction. The surface reflectance images of 
bands 4 and 8 were selected, which were processed 
for 7/9th/2018. Then, the spectral index Normalized 
Difference Vegetation Index - NDVI [24] was calcu-
lated in each plot. Finally, for each plot, the values of 
average NDVI, maximum NDVI and standard de-
viation of NDVI were calculated.

Fig. 1 - Location of the study area.

models, using the Random Forest (RF) regression 
algorithm, implemented in the statistical software 
R [23].  The RF technique is based on bagging de-
cision trees, with an important extension - in ad-
dition to showing the records, the algorithm also 
shows the trees.  In traditional decision trees, to de-
termine how to create a subpartition of a partition, 
the algorithm chooses a variable and a division 
point through the minimization of a criterion to be 
chosen.  However, in the case of RF, at each stage of 
the algorithm, the choice of a variable is limited to a 
random subset of variables.  Thus, when compared 
to the basic tree algorithm, the RF algorithm adds 
two more steps: bagging and bootstrap sampling of 
the variables in each division [25].  RF has been 
used for productivity forecasting, due to its ability to 
handle high data dimensionality, outlier detection, 
robustness against overfitting and the possibility of 
studying the importance of the input variable in a 
calibrated model [26].  For the construction of the 
models, 80% of the data were used for calibration 
and 20% for validation.  Two empirical models were 
created: i) Model 1 used only agronomic data, such 
as cutting stage, sugarcane variety, soil type and re-
lief; ii) Model 2 considered the agronomic data of 
Model 1 (cutting stage, sugarcane variety, soil type 
and relief) and satellite image data was added, such 
as the average values of the NDVI vegetation index, 
NDVI standard deviation and maximum NDVI 
vegetation index values. The evaluation metrics 
used were the coefficient of determination (R²) and 
Root Mean Square Error (RMSE).  To determine 
the evaluation metrics, the TCH estimated by the 
model, using the 20% of the data from the valida-
tion set, was compared to the TCH measured by the 
plant.  Finally, the importance of the variables was 
evaluated using the Random Forest algorithm [27].

4. Results And Discussion
Model 1, with agronomic variables, presented 

R² equal to 0.64 and RMSE equal to 10.2 ton/ha.  
The data dispersion can be seen in figure 2a.  Sim-
ilar results, R² of 0.73, were found for the study 

2.2 Sugar cane productivity modeling

Agronomic data and data from satellite images 
were integrated through the creation of empirical 
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using agronomic variables such as soil type, fur-
row width, plot yield in relation to the last year, 
sugarcane variety, irrigation, epidemic control, 
fertilization, and rainfall volume [28].  Other stud-
ies on sugarcane productivity obtained variation 
in the average absolute error obtained (MAE) be-
tween 4.6 and 7.5 ton/ha, that is, RMSE values 
between 2.1 and 2.7 ton/ha, close to that of the 
present study. The authors considered production 
and management variables, in addition to the cli-
mate that occurred during the analysis period, in 
order to evaluate models such as Artificial Neural 
Networks, Support Vector Machines, Driven Re-
gression Trees and Random Forest [29].  Both au-
thors associated productivity with climatological 
variables and achieved better results demonstrated 
by the evaluation metrics.

Among the variables evaluated, by model 1, the cut-
ting stage was the most important variable, followed by 
the variety of sugar cane, type of soil and, finally, relief 
table 1.  A similar result was found by other authors, who, 
carrying out a study with a decision tree for a single sug-
ar mill unit in the west of the state of São Paulo, found 
that the number of cuts and clay content in the upper soil 
layer (up to 25 cm) are the main factors that affect the 
productivity of sugar cane [30].  Furthermore, the evalu-
ation of more than one data mining technique, using ag-
ronomic variables and climate, to identify and order the 
main variables that condition sugar cane productivity, 
showed that the number of cuts was the most important 
factor by all data mining techniques [16]. 

 As for the variety of sugar cane, it is known that 
it is a direct indicator of productivity, since the dif-
ferences between the varieties contribute signifi-
cantly to the variability of productivity [31].  This 
is because each variety of sugar cane has a specific 
characteristic.  In addition, it is emphasized that 
there is a significant interaction between varieties 
and successive cuts in sugar cane productivity [32], 
which directly reflects on productivity.

The relief was the variable with less relevance in 
relation to the other variables. This fact can be ex-
plained due to the low variability of the terrain fea-
tures, which remained between smooth wavy and 

wavy and ended up not influencing, in this study, 
in a significant way in the productivity variability.

By adding other variables to the empirical pro-
ductivity model, such as mean values, standard 
deviation and maximum values of the NDVI veg-
etation index, the model presented better adjust-
ments (R² equal to 0.83), see figure 2b. The R² ob-
tained increased to 0.83 and the RMSE decreased 
to 7.0 ton/ha compared to model 1. This fact dem-
onstrates that the variables from satellite images 
brought a gain in information in the creation of 
an empirical model for estimating sugar cane pro-
ductivity. Similar studies found values of R² equal 
to 0.94 for sugarcane using images from the Land-
sat-8 satellite, and vegetation indices that combine 
the red and infrared bands such as the NDVI, 
Enhanced Vegetation Index (EVI) and the Soil-
Adjusted Vegetation Index (SAVI), in addition to 
the Normalized Green Vegetation Index (GNDVI) 
[13].  Despite the differences in the results of the 
models, it is noteworthy that these studies consid-
ered more than one vegetation index over time se-
ries, rather than a single date, which was found by 
the authors to estimate more accurately compared 
to a single index of vegetation and a specific date 
of collection of the satellite image. 

As for the importance of variables, for Model 
2, the variables that were most important in esti-
mating productivity were like Model 1, that is, the 
cutting stage and the variety of sugar cane. How-
ever, the variables related to the NDVI were more 
important than the type of soil and relief table 1. 
Vegetation indices such as the NDVI are primar-
ily related to the abundance of green vegetation 
cover and biomass and are sensitive to variations 
in plant canopy stress responses, cultivars and 
management practices [33, 34]. In addition, data 
on vegetation indices obtained during the period 
of maximum growth are directly related to the pro-
ductivity of the sugar cane crop [35]. Other stud-
ies have shown the importance of indices such as 
the NDVI for predicting sugar cane productivity. 
Mulianga et all. [36] obtained an RMSE of less than 
5 ton/ha to estimate productivity using the NDVI 
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b)

5. Conclusions
Empirical productivity models were created us-

ing agronomic information and images from the 
Sentinel-2 satellite, based on the Random Forest 
algorithm.  The results demonstrated that the com-
bination of agronomic variables and satellite images 
brought improvements in the estimation of sugar 
cane productivity.  The most important variables 
for the empirical models were the cutting stage, 
sugar cane variety and average NDVI of the plot.  
Future studies should be carried out to integrate 
climate information and other vegetation indices.  
Finally, the use of temporal series of images to es-
timate and monitor productivity can bring gains to 
the monitoring of sugar cane.

from the MODIS (Moderate Resolution Imaging 
Spectroradiometer) satellite and agronomic data, 
using a linear regression model Fernandes et all. [37] 
also showed the importance of the NDVI when us-
ing it to predict the productivity of sugar cane in 
the State of São Paulo, for this, images from the 
MODIS sensor and a model of a set of artificial 
neural networks were used. The R² obtained in 
this study was 0.61.

Tab. 1 - Importance of variables.

Order of 
importance

Model 1 Model 2

1 Cutting stage Cutting stage

2
Variety of 
sugar cane

Variety of sugar cane

3 Soil type Average NDVI

4 Relief
NDVI standard devia-

tion
5 - Max NDVI
6 - Soil type
7 - Relief

Source:  Author.

Fig. 2 – Scatter plot for model 1 considering only agro-
nomic variables (a) and considering agronomic and satel-
lite variables -model 2 (b).

a)
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